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Abstract
Purpose: Measurement error and transient variability affect vital signs. These issues are inconsistently
considered in published reports and clinical practice. We investigated the association between major
hemorrhagic injury and vital signs, successively applying analytic techniques that excluded unreliable
measurements, reduced transient variation, and then controlled for ambiguity in individual vital signs
through multivariate analysis.
Methods: Vital sign data from 671 adult prehospital trauma patients were analyzed retrospectively.
Computer algorithms were used to identify and exclude unreliable data and to apply time averaging. An
ensemble classifier was developed and tested by cross-validation. Primary outcome was hemorrhagic
injury plus red cell transfusion. Areas under receiver operating characteristic curves (ROC AUCs) were
compared by the test of DeLong et al.
Results: Of initial vital signs, systolic blood pressure (BP) had the highest ROC AUC of 0.71 (95%
confidence interval, 0.64-0.78). The ROC AUCs improved after excluding unreliable data, significantly
for heart rate and respiratory rate but not significantly for BP. Time averaging to reduce temporal
variability further increased AUCs, significantly for BP and not significantly for heart rate and
respiratory rate. The ensemble classifier yielded a final ROC AUC of 0.84 (95% confidence interval,
0.80-0.89) in cross-validation.
Conclusions: Techniques to reduce variability in vital sign data can lead to significantly improved
diagnostic performance. Failure to consider such variability could significantly reduce clinical
effectiveness or confound research investigations.
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1. Introduction

Vital signs measurement is a routine aspect of clinical
practice and research protocols. Although it is known that
transient variability and measurement error can, in principle,
affect the accuracy of vital signs, what is unknown is the
extent to which these factors affect diagnostic capabilities in
actual clinical practice. Vital signs fluctuate through time
because of transient perturbations (eg, medication boluses,
bouts of pain, anxiety, coughing) as well as natural steady-
state variability. In addition, the accuracy of vital sign data is
affected by clinicians' technique [1]. For example, accurate
blood pressure (BP) measurement using a cuff requires
proper fit and positioning of the cuff, a relaxed and properly
positioned extremity, and the absence of patient motion [2].
Significant discrepancies have been reported between
different methods of measuring noninvasive BP [3].
Similarly, respiratory rate (RR) measurement is prone to
technical error, whether measured by a clinician [4] or by a
bedside monitor via impedance pneumography (IP) [5]. In
one report, both triage nurses' measurements of RR and
electronic measurement of RR revealed poor sensitivity for
bradypnea and tachypnea, and the authors referred to RR as
“the vexatious vital”[4]. Heart rate (HR) monitored by
electrocardiography (ECG) can be unreliable, that is, if
electrodes are improperly affixed, and false arrhythmia
alarms are commonplace [6]. Multiple authors have called
into question the value of HR in assessing the hemodynamic
state of a patient because of its variable relationship with
hypovolemia [7,8]. Finally, it is worth noting that the
accuracy of vital sign data may vary considerably for
different makes and models of measurement devices [9-11].

The extent to which these factors affect diagnostic
capabilities in actual practice is relevant to the design and
interpretation of clinical investigations. If vital sign data were
often polluted by inaccuracies, then there would be a bias
toward the null hypothesis, where positive study effects
might be masked (ie, type II study errors). Alternatively,
failure to describe key methodology that improved vital sign
accuracy (eg, superior equipment, training, or study pro-
tocols) would make it harder for others to replicate a
successful study. Consider that some reports support the
usefulness of prehospital severity scores for trauma patients
[12-14], whereas other studies found those scores ineffective
[15,16]. In these examples, the reports lacked any explicit
consideration of the measurement apparatus, clinical pro-
tocols, and quality assurance processes related to vital sign
measurements; and inconsistency in how vital signs were
measured could have contributed to the heterogeneous
findings. More broadly, there are diverse sets of conflicting
reports with a shared failure to detail vital sign measurement
methodology, for example, the risk of volume resuscitation
of trauma patients with uncontrolled hemorrhage [17,18], the
benefit of rapid response teams for inpatients with physio-
logic deterioration [19-22], and the benefit of early goal-

directed resuscitation for septic shock [23]. It is possible that
different approaches to vital sign measurements contributed
to the inconsistencies of the reports' findings.

We investigated the association between standard vital
signs and major hemorrhagic injury in a population of
prehospital trauma patients using computational techniques
that excluded unreliable measurements, reduced transient
perturbations, and reduced ambiguity of individual vital
signs. We compared these results with conventional
analyses. The findings are applicable to the clinical
evaluation of hemorrhage, which is the single most treatable
cause of mortality in trauma patients [24,25]. Moreover, the
findings may relate to a range of applications because the
extent to which different analytic methods yield significantly
different results indicates the importance of considering
these factors in clinical practice and research studies.

2. Materials and methods

2.1. Clinical data collection

This was a retrospective analysis of a database, originally
collected and analyzed by Cooke et al [26] with institutional
review board approval, of trauma patients during transport
by air ambulance from the scene of injury to a level I trauma
center [26]. Between August 2001 and April 2004, the
following physiologic data were measured in a convenience
sample by Propaq 206EL monitors (Protocol Systems,
Beaverton, Ore) and archived using a networked personal
digital assistant: ECG and IP recorded at 182 and 23 Hz,
respectively; the corresponding HR and RR output at
1-second intervals; and systolic BP (SBP) and diastolic BP
(DBP) measured intermittently at multiminute intervals.
Clinical data were collected during retrospective chart
review, including demographics, prehospital interventions,
hospital treatments, and injury descriptions. Subsequently,
vital sign data from 788 patients were uploaded to our data
warehousing system [27]. Protected health information was
not included.

All data analysis was performed using MATLAB v7
(MathWorks, Natick, Mass).

2.2. Vital sign reliability

For each vital sign value, reliable data were identified
by automated algorithms that rated each datum on an
integer scale of 0 to 3 from least reliable to most reliable.
Vital sign data rated 2 or 3 were considered reliable;
otherwise, they were unreliable. Detailed descriptions of
these algorithms have been previously reported [28-30].
Here, we provide an overview of the methodology. The
algorithms analyze moving windows of physiologic data.
The algorithms rate the reliability of vital signs computed
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from the data windows based on (1) a computerized
assessment of the ECG or IP waveforms' reliability and (2)
a comparison between the rates output by the Propaq
206EL vs an independent calculation of the HR or RR
performed by the algorithm. In practice, when waveforms
demonstrate clear, rhythmic beats or breaths and the rates
output by the Propaq 206EL match the algorithms' own
calculations, then the corresponding HR or RR is rated as
reliable. Conversely, when the waveforms are noisy with
irregular, heterogeneous beats or breaths and/or there were
major discrepancies between the rates output by the Propaq
206EL vs the algorithms' own calculations, then the HR or
RR is rated as unreliable. The underlying rationale is the
assumption that clean ECG or IP waveforms lead to
reliable HR or RR measurements and that HR or RR tends
to be reliable when 2 independent calculation methods
yield similar results.

In prior validation, the reliability rating of RR using the
automated algorithms typically concurred with clinicians
who independently applied the reliability criteria to a set of
test cases [28,30]. In 99% of the test cases, the automated
algorithm agreed with the clinician RR rating (±1 level),
where high RR reliability ratings were found to be
associated with smaller differences between computer-
calculated and human-calculated RR (average differences
of 1.7 and 8.1 breaths per minute for the best and worst
RR reliability ratings, respectively). Likewise, there was
close agreement (within ±5 beats per minute) between
computer-calculated and human-calculated HR in 97% of
the test cases rated 2 or 3 by the automated HR reliability
algorithm [30].

The BP reliability algorithm determined if the ratio
between SBP, DBP, and mean pressure is physiologic and
if the HR measured by the inflatable oscillometric cuff
matches the ECG HR [29]. The algorithm does not attempt
to distinguish between unequal HRs because of motion
artifact vs unequal HRs because of nonperfusing electrical
beats, for example, premature contractions; in the latter case,
it would be possible for reliable BP data to be misclassified
as unreliable.

2.3. Subject selection

The primary study population consisted of patients with
any reliable vital sign datum within the initial 15 minutes of
prehospital monitoring. We also studied 3 subgroups:
patients with pairs of at least 1 reliable and 1 unreliable (a)
HR, (b) RR, and (c) BP. In the primary analysis, we excluded
the “ambiguous outcome” patients who received red blood
cell (RBC) transfusions but lacked documented injuries that
were indisputably hemorrhagic (see below). These cases
were reincluded in sensitivity analyses (see below). Also
excluded were the few patients who died before any
diagnostic imaging or surgical exploration, when it could
not be determined whether the patient died to major
hemorrhage vs other critical pathology.

2.4. Primary outcome

Major hemorrhagic injury was defined as a documented
injury that unequivocally causes some loss of blood volume
(laceration or fracture of a solid organ, thoracic or abdominal
hematoma, vascular injury that required operative repair, or
limb amputation) and RBC transfusion within 24 hours.

2.5. Comparison of reliable vs unreliable vital signs

We computed the patients' proportions of reliable vital
signs (median and interquartile range). For the 3 subgroups
with at least 1 reliable and 1 unreliable vital sign—HR, RR,
and BP—we computed each patient's mean of the reliable
and of the unreliable data and compared the population mean
of the subjects' means with Student t test for paired data
(note that the t test is valid for normal and nonnormal
distributions as long as there are enough subjects per
distribution, eg, 30 or more [31]).

To compare diagnostic performance, we repeated the
following statistical computation 100 times for each vital
sign: from each patient, we randomly selected 1 reliable and
1 unreliable measurement, then computed receiver operating
characteristic (ROC) curves for the selected reliable and the
unreliable data using the method of DeLong et al [32]. We
computed the difference between the areas under those
curves (ROC AUCs) and averaged the results from the 100
cycles. This methodology avoided biases due to those
patients with a surplus of measurements and unequal ratios
of reliable vs unreliable measurements between patients.

2.6. Association between vital signs and major
hemorrhagic injury within the initial 15 minutes

For each vital sign, we computed the univariate ROC
AUC for (a) the first nonzero value, (b) the first reliable
value, (c) the last reliable value, and (d) the average of all
reliable values within 15 minutes.

We performed multivariate analysis using ensemble
classification, a collection of multivariate regression models.
Each of the models within the ensemble is a standard linear
regression model, and their outputs are simply averaged to
yield the ensemble classifier output [33]. Ensemble classi-
fication is able to classify subjects with incomplete data, as is
explained below. This property was important because many
patients lacked reliable data for every vital sign.

Each regression model within the ensemble used 1, 2, or 3
of the following parameters: HR, RR, SBP, and SBP − DBP.
Thefinal ensemblewas composed of all possible combinations
(14 total regression models). We applied cross-validation,
randomly partitioning 50% of the study population for
classifier training. Each model was trained using the subset
of patients who possessed at least 1 reliable measurement of
each model parameter within the initial 15 minutes, using the
average of all reliable values from the initial 15 minutes. Next,
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we tested the ensemble classifier in the remaining 50% of the
patients. For each patient, we only used those regression
models for which the patient had the necessary reliable data
during the initial 15 minutes and used the models' average
output as the final output. This process was repeated for 100
cycles, each time randomly repartitioning the patients into
training/testing sets. We computed the mean ROC AUC of
those 100 testing cycles.

2.7. Sensitivity analyses

We repeated the ensemble classification using 4 alterna-
tive methodologies: (a) reinclusion of the “ambiguous out-
come” patients, treating them as nonhemorrhage control
cases; (b) redefining “major hemorrhagic injury” as a docu-
mented hemorrhagic injury, as above, plus RBC transfusion
or at least 3 L of crystalloid infusion; (c) redefining “major
hemorrhagic injury” as the receipt of at least 5 U of RBC

regardless of the documented injuries; and (d) using reliable
vital sign data from only the initial 10 minutes.

3. Results

The database had 788 records with at least 1 nonzero vital
sign datum. One hundred seventeen cases were excluded
(105 were “ambiguous outcome” cases subsequently rein-
troduced in the sensitivity analysis described below, whereas
12 lacked any reliable vital sign data). Table 1 shows the
population characteristics, with 12% having major hemor-
rhagic injury, 17% with prehospital intubation, and 6%
overall mortality. Respiratory rate data had the lowest rate of
reliability, whereas BP data had the highest.

Table 2 shows reliable data compared with unreliable
data. Unreliable measurements of HR, RR, and SBP all had
significantly elevated values vs their reliable counterparts
and tended to have reduced ROC AUCs.

Table 3 reports the cumulative diagnostic yields of
the investigative techniques. The ROC AUCs were signi-
ficantly improved for initial HR and initial RR when relia-
bility was considered. The ROC AUCs were significantly
improved for SBP when the average of all its reliable values
was used, whereas these were nonsignificantly increased
for the average of reliable HR or RR. (In regard to the
effects of mechanical ventilation on RR, the average of all
reliable RR yielded an ROC AUC of 0.72 [95% confidence
interval {CI}, 0.62-0.80] for spontaneously breathing
patients and 0.64 [95% CI, 0.46-0.78] for mechanically
ventilated patients.)

Applied to all 671 patients in the study population, the
ensemble classifier yielded an ROC AUC of 0.84 (95% CI,
0.80-0.89) in cross-validation. This AUC was significantly
greater than any univariate vital sign. The classifier could
identify 36% of major hemorrhagic injury cases with greater

Table 1 Population description

Characteristic Study population

Population size, n 671
Male/female, n a 498/172
Age (y), mean (SD) 38 (15)
Blunt injury, n (%) 596 (89)
Mortality, n (%) 41 (6)
Prehospital intubation, n (%) 115 (17)
Major hemorrhagic injury, n (%) 78 (12)
% Reliable HR for patient, median (IQR) 62 (4-84)
% Reliable RR for patient, median (IQR) 16 (0-45)
% Reliable SBP for patient, median (IQR) 100 (83-100)

Patients with at least 1 reliable vital sign datum within 15 minutes after
exclusion of cases who received RBC transfusions but lacked
documented injuries that were indisputably hemorrhagic (see text for
details). IQR indicates interquartile range.

a Sex unknown for 1 patient in the database.

Table 2 Reliable compared with unreliable vital signs

Vital
sign

Population with
at least 1 reliable
and 1 unreliable
vital sign, n

Patients with
major
hemorrhagic
injury, n (%)

Patients'
proportion of
reliable data (%),
median (IQR)

Reliable data,
mean (SD)

Unreliable data,
mean (SD)

Reliable vs
unreliable data,
P value
(Student t test)

Unreliable vital signs:
ΔROC AUC for Dx
of major hemorrhagic
injury, mean
(upper/lower range)

HR 632 72 (11) 65 (7-85) 95 (20) 99 (20) b.001 a −0.02 (−0.05/+ 0.01)
RR 388 52 (13) 39 (20-61) 27 (7) 37 (17) b.001 a −0.11 (−0.18/−0.03)
SBP 217 34 (16) 75 (67-86) 127 (22) 138 (37) b.001 b −0.12 (−0.21/−0.03)
DBP 221 34 (15) 75 (67-86) 72 (15) 76 (75) NS −0.02 (−0.09/+ 0.04)

Populations included only those patients determined to have at least 1 reliable and 1 unreliable vital sign measurement, according to the reliability algorithms,
at any time during their transport. Shown are the patients' means of reliable vs unreliable data for all patients (computing first the mean of each patient and
then computing the mean of the patients' means). Student t test for paired data was used to test for significant differences between patients' means. Finally,
the change in ROC AUC in the diagnosis of major hemorrhagic injury is shown, when one random unreliable measurement was used in place of a random
reliable measurement (see text for details of this calculation). NS indicates not significant. Dx indicates diagnosis.

a Reliable vs unreliable data are also significant (P b .001) in hemorrhage cases alone and in control cases alone.
b Reliable vs unreliable data are also significant in hemorrhage cases alone (P = .01) and in control cases alone (P b .001).
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than 60% positive predictive value (PPV) and greater than
85% of hemorrhage cases with 24% PPV (Fig. 1).

The sensitivity analyses yielded the following ROC
AUCs for major hemorrhagic injury, which were similar

to the primary analysis: (a) inclusion of the ambiguous
outcome patients, 0.82 (95% CI, 0.77-0.87); (b) use of RBC
transfusion or at least 3 L of crystalloid infusion as the
outcome, 0.83 (95% CI, 0.79-0.87); (c) inclusion of

Table 3 Areas under receiver operating characteristic curves for the diagnosis of major hemorrhagic injury with application of vital sign
reliability criteria, time averaging, and multivariate (ensemble) classification

Vital sign Population ROC AUC (95% CI)

First nonzero First reliable Last reliable All reliable

HR At least 1 reliable HR (n = 625) 0.60 (0.53-0.68) 0.71 (0.63-0.77) a 0.72 (0.65-0.78) a 0.73 (0.65-0.79) a

RR At least 1 reliable RR
and intubated (n = 85)

0.52 (0.46-0.58) 0.64 (0.55-0.72) a 0.63 (0.53-0.71) 0.67 (0.58-0.75) a

RR At least 1 reliable RR and
spontaneous breathing (n = 313)

0.55 (0.48-0.61) 0.64 (0.53-0.74) 0.68 (0.56-0.77) a 0.72 (0.62-0.80) a

SBP At least 1 reliable SBP (n = 648) 0.71 (0.64-0.78) 0.74 (0.67-0.80) 0.77 (0.70-0.83) 0.79 (0.73-0.85) a,b

DBP At least 1 reliable DBP (n = 648) 0.62 (0.54-0.69) 0.64 (0.56-0.71) 0.64 (0.56-0.71) 0.63 (0.55-0.71)
Ensemble classifier At least 1 reliable HR or reliable

RR or reliable SBP (n = 671)
NA NA NA 0.84 (0.80-0.89) c

Ensemble classification was applied to the overall study population. For RR, results are also provided separately for intubated patients and for spontaneously
breathing patients. The method of DeLong [32] for paired data was used to test for statistically significant differences of ROC AUCs. NA indicates
not applicable.

a ROC AUC significantly (P b .05) increased vs ROC AUC for “first nonzero” value.
b ROC AUC significantly (P b .05) increased vs ROC AUC for “first reliable” data.
c Ensemble ROC AUC significantly increased vs ROC AUC for “all reliable” HR data (P b .001), “all reliable” RR data (P b .001), “all reliable” SBP

data (P b .05), and “all reliable” DBP data (P b.001).

Fig. 1 Histograms of basic vital signs and of the multivariate ensemble classifier for major hemorrhagic injury cases vs control cases.
Histograms for each basic vital sign (HR, RR, SBP, and DBP) using the first nonzero value and the output of the multivariate ensemble
classifier (using cross-validation with distinct training/testing data; see text for details). Patient populations for each histogram correspond to
the populations in Table 3, whereas multivariate ensemble classification was applied to the entire study population. Right: Ensemble output
(testing data) averaged from 100 iterations of cross-validation. Using one cutoff, ensemble classification yielded a sensitivity of greater than
85% and a PPV of 24%; patients below this threshold lie in the green background field. Using an alternative cutoff, ensemble classification
offered a sensitivity of 36% and a PPV of greater than 60%; patients above this threshold lie in the red background field. ⁎Green zone: 383
control cases and 11 major hemorrhagic injury cases; †yellow zone: 192 control cases and 39 major hemorrhagic injury cases; ‡red zone: 18
control cases and 28 major hemorrhagic injury cases.
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ambiguous outcome patients and changing the outcome
to the receipt of at least 5 U of RBC, 0.81 (95% CI, 0.76-
0.86); and (d) use of only the initial 10 minutes, 0.81 (95%
CI, 0.76-0.86).

4. Discussion

We found that accounting for measurement error and
physiologic variability can significantly improve the associ-
ation between vital signs and major hemorrhagic injury. Vital
signs may be more informative about a trauma patient's
circulatory state than previously appreciated in reports that
did not explicitly consider these factors [26,34-36]. More-
over, these findings may inform the design and interpretation
of a range of clinical trials that involve vital signs and how
vital signs are used in clinical practice. The implications are
cautionary, suggesting that such factors are important to
consider. At the same time, these findings also suggest
potential solutions.

The computational techniques used in this analysis have
been previously described [28-30,33,37,38]. Here, the
techniques were integrated to determine their cumulative
effects in a population of trauma patients. These techniques

significantly improved the association of vital signs and
major hemorrhagic injury without the need for consideration
of the patients' baseline vital signs, administration of
medications, anatomical location of the injury, age, or
mechanism of injury. Applied cumulatively, diagnostic
performance exceeded prior reports on the individual
techniques [33]. The vital sign patterns correctly classified
by these techniques were not always self-evident by eye
(eg, Fig. 2).

4.1. Clinical implications

We have shown that reliable vital sign data have a
significantly higher association with a life-threatening
pathophysiology, even as unreliable measurements were
commonplace (Table 1). These findings support the
adherence to proper vital sign measurement techniques;
even better than excluding unreliable data, as was done in
this retrospective study, would be reducing unreliable
measurements in the first place. When procuring monitoring
apparatus, it would be desirable to prioritize makes and
models that possess maximum accuracy [11-13]. In addition,
the study implies a potential benefit to continuing training of
clinical staff to enhance the diagnostic value of vital sign

Fig. 2 Case examples for which the presence or absence of major hemorrhagic injuries can be identified by patterns in the vital signs. Both
cases had HRs of more than 120 beats per minute and normotension. In patient 1, the ensemble multivariate classifier—which weighs the HR,
RR, and systolic and pulse pressures—indicated that major hemorrhagic injury was unlikely (ie, the classifier output lay in the low-risk green
zone, with a 97% negative predictive value; see Fig. 1). Patient 1 did not require RBC transfusion and was diagnosed with a cerebral contusion
and a neck injury without major vascular involvement. In patient 2, the ensemble multivariate classifier indicated that major hemorrhagic
injury was probable (ie, the classifier output lay in the high-risk red zone, with a 60% PPV; see Fig. 1). Patient 2 had a grade III liver laceration;
a fractured, disrupted pelvis; and a femur fracture and received 3 U of RBC. Thin lines and open triangles indicate unreliable data according to
the automated algorithms; thick lines and solid triangles indicate reliable data.
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measurement. Sources of unreliable vital sign data include
poor electrode placement (eg, chest hair causing poor skin
adhesion), excessive patient movement, and poor placement
of BP cuffs. It would be truly revealing to study,
prospectively, which sources of error are the most problem-
atic and whether the association between vital signs and
pathology can be enhanced through focused training.

Certain techniques suggested by this report might be
applied at the bedside to assess the state of the casualty.
For example, when patients arrive at the hospital, clinicians
expecting obvious vital sign trends might be misled because
we have found that transient perturbations may mask the
underlying trends and that measurements made at the end
of transport are not necessarily more useful than the
preceding prehospital measurements. Shapiro et al [39] and
Lipsky et al [40] reported that, among patients who arrived
normotensive in the emergency department, one or more
episodes of preceding hypotension were associated with
higher acuity. Our findings suggest that, in addition to the
most recent measurements, clinicians should consider the
time average of recent data, which we have shown can be
significantly more diagnostic.

This raises the question of what duration of time window
is optimal for computation of average values of recent vital
sign data, for example, 5, 15, or 60 minutes. The goal of the
time averaging is to filter out transient perturbations; but if
the time window gets too large, then time averaging can
actually obscure trends developing in later data. Therefore, it
is important that the time window should not be too large.
We speculate that averaging over more than 15 minutes may
not be diagnostically optimal, but this is difficult to answer
definitively with the current data set because the records are
of such heterogeneous duration.

Simultaneous consideration of multiple vital signs can
also improve the value of the data. For instance, low BP
could represent significant blood loss, the patient's normal
baseline, or reduced adrenergic tone. Tachycardia and
tachypnea suggest the former, normal rate and respiration
suggest baseline physiology, and bradycardia and bradypnea
suggest sympatholysis. Clinicians may be unable to mentally
compute a multivariate statistical model; but a simple
multivariate metric, such as the shock index (the ratio of
HR and SBP [41,42]), can be applied at the bedside.

4.2. Research implications

We demonstrated that accounting for sources of mea-
surement variability can yield significantly different results
when analyzing vital sign data. Accordingly, we recommend
the following steps for clinical research involving vital
sign data: (a) report the make and model of any monitoring
equipment used and, when available, provide accuracy
citations [12,13,43]; (b) report relevant in-service training, or
its absence, of the clinical staff; (c) keep the measurement
environment as consistent as possible to reduce transient
variability, or else use the average of several measurements;

and (d) consider the use of validated clinical scores or
propensity scores to supplement or replace individual
vital signs.

In addition, we note that there has been academic interest
in novel types of physiologic sensors intended to improve
patient monitoring. The cost and effort necessary to adopt
new sensor modalities might be weighed against the findings
in this report, which are that standard vital signs can be
significantly improved through application of some simple
techniques. Academically, we suggest that new monitoring
modalities should be directly compared against conventional
monitoring, with consideration given to the sources of
variability highlighted here.

4.3. Specific findings

Systolic BP was the best univariate predictor. We [37]
and others [44,45] have previously found that prehospital
trauma patients demonstrate substantial temporal variability.
We reduced the effects of transient perturbations by using the
time average of serial vital sign measurements, which
yielded significantly higher ROC AUCs for SBP, higher
than either the initial or final prehospital SBP. Diastolic BP
alone was a weak predictor; but we found that it provides
additional information independent of SBP because it is
useful to compute pulse pressure, the difference between
SBP and DBP [33]. In spontaneously breathing patients,
reliable RR was a useful predictor of hemorrhage. This
finding was anticipated by classic physiologic reports that
demonstrated that blood flow to the carotid body chemore-
ceptors is reduced in early hemorrhage because of compen-
satory vasoconstriction. “Stagnant” hypoxia then develops in
the chemoreceptors, triggering an increased respiratory drive
and tachypnea [46-49]. Interestingly, this RR reliability
algorithm was not originally developed to diagnose major
hemorrhagic injury per se, but to identify intervals in the IP
that matched clinicians' opinions that the respiratory
waveform was rhythmic and consistent [28]. Used as a
diagnostic tool, we found that reliable RR data were
significantly more diagnostic than unreliable RR. We
observed that unreliable RR was often falsely elevated (ie,
biased) because of motion artifacts in the pneumogram that
were incorrectly counted as additional breaths.

Only a subset of patients (59%) had a complete set of
reliable vital signs within 15 minutes. This was consistent
with prior reports that unreliable vital sign data are all too
typical in clinical practice [1,2,4-6]. To deal with missing
data, we used an ensemble classifier for multivariate
classification, which was significantly better than univariate
classification. In a prior report, the ensemble classifier was
applied to a moving 2-minute window of vital sign data [33].
That approach was not as successful because, in any given
2-minute window, there was an exaggerated proportion of
missing data and there was major minute-to-minute vari-
ability that, here, we successfully filtered out by time
averaging over 15 minutes (see above). In addition, the
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current ensemble uses pulse pressure instead of DBP and
does not incorporate oxygen saturation, thus excluding weak
univariate predictors.

4.4. Automated diagnostic algorithms

It is technically feasible to run this investigation's
analysis algorithms in real time, automatically distinguishing
between normovolemic vs hemorrhagic vital sign patterns.
We speculate that such automated, continuous analysis
could improve the quality and safety of any monitored
patient, especially when the clinical staff is distracted or
inexperienced. In addition, protocols for triage or resusci-
tation could be considered using the algorithm's output as a
starting point that may be more clinically valid than any sole
vital sign. Lastly, in some cases, the algorithm could
enhance the judgment of the clinician (eg, cases such as in
Fig. 2). Similar types of automated analysis of vital sign data
may likewise prove useful for other clinical applications,
such as early detection of acute deterioration of hospital
ward patients [50].

4.5. Limitations

There are several factors to consider in terms of the
internal validity of this study. First, there is no gold standard
definition to retrospectively distinguish true hemorrhagic
injury vs minor (or non) hemorrhagic injures. We therefore
analyzed several alternative outcome definitions. The similar
results, regardless of the specific definition, suggest that the
findings were not an artifact of the outcome definition but
will be similar given any reasonable definition of hemor-
rhagic injury (note that our database did not contain
parameters such as base deficit and pH). Our findings
would be further strengthened if future investigations
demonstrate comparable findings given additional end points
and pathologic processes.

As a second limitation, the present findings depended on
our algorithms to identify reliable vital signs; and the results
might be different with different algorithms. However, in
developing these algorithms, we found that most analytic
methodologies that we explored yielded similar results
because, in practice, the different algorithms only differed
about borderline cases, a minority of the data set [51]. In
most of the cases, which were clearly reliable (eg, HR based
on very clean ECG) or clearly unreliable (eg, HR based on
very noisy ECG), different versions of the algorithms that we
explored yielded consistent ratings of vital sign reliability.
(Note that these reliability algorithms were not a priori
developed to diagnose major hemorrhage but to match
clinicians' opinions regarding whether waveform segments
were clean with well-defined heartbeats [27] or breaths [28].)

Third, the data set was notable in that many patients were
missing a full set of reliable data. However, we contend that
this is a salient finding of the study, rather than a limitation,

because it emphasizes the prevalence of unreliable vital sign
data. At the same time, it did not hamper the univariate
analyses because there were suitably large populations for
each analysis. Finally, for the multivariate analysis, we were
able to report a valid ROC AUC for the broadest study
population (any patient with at least 1 reliable vital sign
within the first 15 minutes) by using an ensemble classifier,
which can tolerate missing data. The performance of the
ensemble classifier was assessed through cross-validation,
that is, with distinct training and testing patient populations.

In terms of the external validity of the study, the issues
that we studied have been previously recognized [1,2,4-6].
This report offers a novel, quantitative analysis of their
magnitude of effect in actual prehospital practice. It is not
certain to what extent the quantitative results of this analysis
will apply to different clinical settings, for example,
emergency department vs hospital ward vs ground EMS,
and different make and model of patient monitors. Likewise,
there may be salient differences given alternative popula-
tions, for example, patients older in age with a higher rate of
β-blocker medication. However, the study population of this
report was reasonably large (N600 subjects); and such
considerations were outside its scope. This analysis provides
a prima facie demonstration that each of the factors is
important and that specific strategies can significantly alter
diagnostic test characteristics of routine clinical data. Further
work is warranted to explore these factors in a diversity of
clinical arenas and populations.

5. Conclusion

The study is notable for quantifying the magnitude of the
effect of physiologic variability and measurement error on a
diagnostic application of vital signs. These sources of
variability were commonplace in this clinical data analysis.
Techniques that accounted for the variability yielded
significantly improved diagnostic test characteristics. Vital
sign data are often treated uncritically in published reports.
The findings here suggest that these factors should be
carefully considered when using vital signs in clinical
practice or research protocols.
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